1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
#![recursion_limit = "512"]
// While under active devel, these warnings are kind of annoying.
#![allow(dead_code)]

//! Generates code to create a derived `glib::Object`
//!
//! The `gobject_gen!` macro defines an extension to the Rust language so
//! that one can create GObject implementations, or define
//! GTypeInterfaces, using only safe code.  All the boilerplate needed
//! to register the GObject type, its signals and properties, etc., is
//! automatically generated.
//!
//! # Syntax overview {#syntax-overview}
//!
//! The macro is invoked as follows:
//!
//! ```norun
//! // see "Necessary imports" below on why this is needed
//! #[macro_use]
//! extern crate glib;
//! use gobject_gen::gobject_gen;
//!
//! gobject_gen! {
//!     class Foo {
//!         private_field: Cell<u32>,
//!         another_field: RefCell<String>,
//!     }
//!
//!     // Methods and signals; their order defines
//!     // the ABI of your class
//!     impl Foo {
//!         pub fn a_static_method(&self) {
//!             // self.get_priv() gives us access to the private
//!             // fields declared in class Foo
//!             do_something(self.get_priv().private_field.get());
//!         }
//!
//!         virtual fn a_virtual_method(&self) {
//!             // default handler implementation goes here
//!         }
//!
//!         signal fn clicked(&self);
//!     }
//! }
//! ```
//!
//! Read on for the details on how to use specific GObject features.
//!
//! # Necessary imports
//!
//! The generated code depends on external crates:
//!
//! * The `glib` crate and its macros.
//! * The `gobject_gen` crate, declaring `proc_macro` use.
//!
//! You can put this at the top of your crate's main file:
//!
//! ```norun
//! #![feature(proc_macro)]
//! extern crate gobject_gen;
//!
//! #[macro_use]
//! extern crate glib;
//!
//! use gobject_gen::gobject_gen;
//! ```
//!
//! You need the following dependencies in `Cargo.toml`:
//!
//! ```norun
//! [dependencies]
//! glib = "0.5.0"
//! glib-sys = "0.6.0"
//! gobject-sys = "0.6.0"
//! libc = "0.2"
//! ```
//!
//! # Instance-private data
//!
//! GObject classes defined through this macro can have instance-private data
//! declared as struct fields inside the class.
//!
//! * **Declaration:** Declare struct fields inside `class Foo { ... }`
//!
//! * **Initialization:** Implement the `Default` trait for your
//! struct members, either with `#[derive(Default)]` or with an `impl Default`
//! if its missing. Note that you have to do this for each type used across
//! fields. When the generated code needs to initialize the instance-private
//! data, it will do so by calling the `Default::default()` method and assign it
//! to the internally private structure generated by the macro.
//!
//! * **Drop:** When the GObject instance gets finalized, your private
//! data will be `drop()`ed.  You can provide `impl Drop` for any fields
//! that need explicit resource management.
//!
//! # Declaring methods
//!
//! Inside an `impl MyClass` item, you can declare static methods
//! (cannot be overriden in derived classes), or virtual methods that
//! can be overriden:
//!
//! ```norun
//! impl MyClass {
//!     pub fn my_static_method(&self, x: u32) -> String {
//!         // implement your method here
//!     }
//!
//!     virtual fn my_virtual_method(&self) -> usize {
//!         // implement your method here
//!     }
//! }
//! ```
//!
//! A `pub` method is static and cannot be overriden in derived
//! classes.  A `virtual` method is assumed to be public and *can* be
//! overriden.
//!
//! The first argument must always be `&self`; gnome-class doesn't
//! support `&mut self`.  To have mutable fields in your instances,
//! you must use interior mutability with `Cell` or `RefCell`.
//!
//! Unlike normal Rust code, method arguments must be bare identifiers
//! with their types, like `x: u32`; they cannot be pattern-matched
//! captures.
//!
//! FIXME: mention limitations on argument and return types
//!
//! # Declaring signals
//!
//! Signals are declared in a similar way to methods, but using `signal` instad of `virtual`:
//! ```norun
//! impl MyClass {
//!     signal fn my_signal(&self, x: u32) {
//!         // implement your default signal handler here
//!     }
//! }
//! ```
//!
//! FIXME: mention limitations on argument and return types
//!
//! # Overriding methods from a parent class
//!
//! You can use the `impl ParentClass for Subclass` notation to override methods in your subclass:
//!
//! ```norun
//! class Foo {
//! }
//!
//! impl Foo {
//!     virtual fn hello(&self) {
//!         println!("hello");
//!     }
//! }
//!
//! class Bar {
//! }
//!
//! impl Foo for Bar {
//!     virtual fn hello(&self) {
//!         println!("overriden hello");
//!     }
//! }
//! ```
//!
//! As of 2018/Nov/15, it is hard to chain up to the parent class from
//! an overriden method.  See [issue
//! #46](https://gitlab.gnome.org/federico/gnome-class/issues/46)
//! about this.
//!
//! # ABI considerations
//!
//! The Application Binary Interface (ABI) of a GObject class is
//! defined by its virtual method table (vtable), which includes both virtual
//! methods and signals.  In gnome-class, this means that the order of
//! method or signal items inside an `impl MyClass` is significant:
//! adding, removing, or reordering the methods and signals will
//! change the ABI, since C code will see a `MyClass` struct with
//! fields to function pointers in a different order.
//!
//! Conventionally, GObject classes can reserve a number of empty
//! vtable slots for future expansion.  In gnome-class, you can use
//! the `reserve_slots` keyword:
//!
//! ```norun
//! impl Foo {
//!     virtual fn one_virtual_method(&self) { ... }
//!
//!     reserve_slots(10)
//! }
//! ```
//!
//! In the example above, there will be 10 unused function pointers at
//! the end of the generated class struct.  If you ever add another
//! method or signal, decrement the number passed to
//! `reserve_slots()`.
//!
//! # Debugging aids and examining generated code
//!
//! With gnome-class still under development, you may need to examine
//! the code that gets generated from the procedural macro.  First,
//! create a directory called `generated` under your crate's toplevel
//! directory.  Then, put a `generate` attribute for your class, like
//! this:
//!
//! ```norun
//! #[cfg(feature = "test-generated")]
//! include!("generated/foo-gen.rs");
//!
//! #[cfg(not(feature = "test-generated"))]
//! gobject_gen! {
//!    #[generate("generated/foo-gen.rs")]
//!     class Foo {
//!     }
//! }
//! ```
//!
//! Correspondingly, add this to `Cargo.toml` to declare the `test-generated` feature:
//!
//! ```norun
//! [features]
//! # If this feature is enabled, it executes the tests with
//! # the rust files generated during an earlier run.
//! test-generated = []
//! ```
//!
//! If you just `cargo build` your code, then it will output the file
//! `generated/foo-gen.rs` which you can examine.  You can then edit
//! that file and rebuild with `cargo build -- --features test-generated` - this will cause
//! the `foo-gen.rs` to get included, instead of using "fresh" generated code.
//!
//! **Remember that changes to the generated code will be overwritten
//! the next time the procedural macro runs!** Don't forget to [report
//! a bug][bugs] if gnome-class is generating incorrect code for you!
//!
//! [bugs]: https://gitlab.gnome.org/federico/gnome-class/issues

extern crate proc_macro;

use crate::errors::*;
#[macro_use]
mod errors;

mod ast;
mod checking;
mod gen;
mod glib_utils;
mod hir;
mod ident_ext;
mod param;
use quote::ToTokens;

/// Generates the code to create a derived glib::Object
///
/// See the [crate's toplevel documentation][crate] for usage instructions.
///
/// [crate]: index.html
#[proc_macro]
#[cfg_attr(rustfmt, rustfmt_skip)]
pub fn gobject_gen(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
    match gobject_gen_inner(input) {
        Ok(tokens) => tokens,
        Err(err) => { err.into_token_stream().into() },
    }
}

mod parser;

fn gobject_gen_inner(input: proc_macro::TokenStream) -> Result<proc_macro::TokenStream> {
    let ast_program = parser::parse_program(input)?;
    let hir_program = hir::Program::from_ast_program(&ast_program)?;
    gen::gir::generate(&hir_program)?;
    let tokens = gen::codegen(&hir_program);

    Ok(tokens.into())
}

#[doc(hidden)]
#[proc_macro]
pub fn testme(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
    testme_inner(input).unwrap_or_else(|err| err.into_token_stream().into())
}

fn testme_inner(input: proc_macro::TokenStream) -> Result<proc_macro::TokenStream> {
    checking::tests::run()?;
    glib_utils::tests::run();
    hir::tests::run()?;
    parser::tests::run()?;
    gen::tests::run();
    Ok(input)
}